
AGILE IN A
NUTSHELL

1

CONTEXT

2

VUCA:
Volatility, Uncertainty,

Complexity & Ambiguity

Definable work vs High – uncertainty work

3

Definable work projects are characterized by clear

procedures that have proved successful on similar projects
in the past.

High-uncertainty projects have high rates of change,

complexity, and risk.

Agile approaches were created to explore feasibility in
short cycles and quickly adapt based on evaluation and

feedback

Agile Manifesto

4

Thought leaders in the software industry formalized the

agile movement in 2001 with the publication of the
Manifesto for Agile Software Development.

The values and ideas contained in this manifesto were

derived from a larger range of software development
frameworks including Scrum, KanBan, Extreme

Programming and many others. So this is why Scrum is
considered an agile framework and associated with the

agile movement.

The Four Values

5

The Four Values

6

Value 1: Individuals and Interactions Over Processes and Tools.

Focusing early on developing the individuals involved in the project and emphasizing productive and effective

interactions help setup a project success

We try to focus the team’s attention on the individuals and interactions involved.

Value 2: Working software Over Comprehensive Documentation

We try to focus on the purpose or business value we’re trying to deliver, rather than paperwork

The agile approach

to documentation

Just in because

Just in time

Just enough

just produce it than to face the consequences of not doing

don’t have to spend extra time to keep it updated as reqs&designs change

only cover our needs; most of efforts focused on the emerging system

7

Value 3: Customer Collaboration Over Contract Negotiation.

Requires a more trusting relationship and more flexible contract models; it moves the emphasis from non-value –adding
activities to productive work.

To be flexible and accommodating, rather than fixed and uncooperative.

Value 4: Responding to Change Over Following a Plan.

Agile projects have highly visible queues of work and plans in the form of backlogs and task boards. The intent of this
value is to broaden the number of people who can readily engaged in the planning process by adjusting the plans and

discussing the impact of changes

Need to acknowledge initial plans were made when we knew least about the project and will need to be updated

as the work progresses

The Four Values

The twelve Principles

8

The twelve Principles

9

Principle 2: Welcome changing requirements, even late in development. Agile processes harness change for the

customer’s competitive advantage

Changes can be great for the project, for example, if they allow us to deliver a late-breaking, hight-priority feature

Agile methods use a lightweight, high-visibility approach –for example, continuously updating and prioritizing changes

into the backlog of work to be done . Agile’s well understood, high-visibility methods for handling changes keep the

project adaptive and flexible.

What we’re delivering is valuable software, not completed work products, WBS items, documentation, or plans

Principle 1: Our highest priority is to satisfy the customer through early and continuous delivery of valuable software

It’s better to get something wrong up front and have time to correct it than to discover the issue much later when so
much more has been built

Our focus should be on the customer and make them satisfy by valuable software, not perfect plans and
documentation

10

Principle 4: Business people and developers must work together daily throughout the project

Written documents, emails, and even telephone calls are less efficient ways of transferring information than face-to-face
interactions

Developers can learn about the business in a way that is far beyond what a collection of requirements-gathering meetings
can ever achieve. As a result, development teams are able to suggest solutions and alternatives to business request. The
business representatives also learn what types of solutions are expensive or slow to develop, and what features are cheap.
They can begin to fine-tune their requests in response..

Delivering within a short timeframe also has the benefit of keeping the product owner engaged and keeping dialogue about
the project going

Principle 3: Deliver working software frequently, from the couple of weeks to a couple of months, with a preference

to the shorter timescale

Agile teams need feedback on what they have created thus far to see if they can proceed, or if a change of course is needed

Principle emphasizes the importance of releasing work to a test environment and getting feedback

The twelve Principles

11

Principle 6: The most efficient and effective method of conveying information to and within a development team is face-

to-face conversation

Face-to-face conversation allow us to quickly transfer a lot of information in a richer way that includes emotions and body
language

In face-to-face conversation , questions can be immediately answered, instance of “parked” with the hope that there will be a
follow-up explanation

Knowledge work projects involve team members who have the unique areas of expertise. Such people do their best work
when they are allowed to make many of day-to-day decisions and local planning for the project.

Principle 5: Build the projects around motivated individuals. Give them the environment and support they need, and trust

them to get the job done.

Agile methods advocate freeing the team from the micromanagement of completing tasks on a Gantt chart

Agile methods promote empowered teams. People work better when they are give the autonomy to organize and plan their
our work.

The twelve Principles

12

Principle 8: Agile processes promote sustainable development. The sponsors, developers, and users should be able

to maintain a constant pace of indefinitely

Agile methods strive to maximize value over the long term; Agile methods recognize the value of sustainable pace that

allow team members to maintain a work-life balance. A sustainable pace is not only better for the team; it benefits the

organization as well.

Working at a pace that can be maintained indefinitely leads to a happier and more productive team.

Principle 7: Working software is the primary measure of progress

The definition of progress as “working system” creates a results-oriented view of the project. Interim deliverables and
partially completed work will get no external recognition. So we want to focus instead on the primary goal of the

project - a product that delivers value to the business.

Shift focus to working results rather than documentation and design. In agile, we assess progress based on the
emerging product or service we are creating.

The twelve Principles

13

Principle 10: Simplicity –the art of maximizing the amount of work not done –is essential

In software world, up to 60 percent of features that are built are used either infrequently or never. Because so many
feature that are built are never actually used, and because complex system have an increased potential to be unreliable,

agile methods focus on simplicity.

Agile methods seek the “simplest thing that could possible work” and recommend that this solution be built first . This

approach not only mitigates risk but also helps boost sponsor confidence.

Principle 9: Continuous attention to technical excellence and good design enhance agility

Agile team needs to balance its efforts to deliver high-value features with continuous attention to the design of the
solutions. This balance allows the product to deliver long-term value without becoming difficult to maintain, change, or

extend.

We have to be mindful of keeping the design clean, efficient, and open to changes. Technical excellence and good
design allow the development team to understand and update the design easily

The twelve Principles

14

Principle 12: At regular intervals, the team reflects on how to become more effective, than tunes and adjusts

its behavior accordingly

Agile methods employ frequently lookbacks, call “restropectives”, to reflect on how things are working on the project
and identify opportunities for improvements.

Principle 11: The best architectures, requirements, and designs emerge from self-organizing teams

Self-organizing teams that have the autonomy to make local decisions have a higher level of ownership and pride in the
architectures, requirements, and designs they create than in those that are forced on them or “suggested” by external
sources

People like self-organizing; it allows them to find an approach that works best for their methods, their relationships, and
their environment. They will thoroughly understand and support the approach, because they helped create it. As a
result, they will produce better work.

The members of a self-organizing project team are closest to the technical details of the project. As a result, they are
best able to spot implementation issues, along with opportunities for improvements

The twelve Principles

Agile Methodologies

15

The most common approaches are Scrum, Extreme Programming (XP), Kanban,
Feature-Driven Development (FDD), Dynamic Systems Development Method (DSDM),
Scrumban, Agile Unified Process and the Crystal family of methods.

16

Scrum Framework

Commitment

Focus

Openness

Courage

Respect

- Scrum is a framework which consist of roles, events, artifacts, and rules, and uses an iterative approach to
deliver working product.

- Scrum is run on timeboxes of 1 month or less with consistent durations called sprints where a potentially
releasable increment of product is produced.

- The Scrum team consists of a product owner, development team, and scrum master.
- The product owner is responsible for maximizing the value of the product.
- The development team is a cross-functional, self-organizing team consisting of team members to

deliver working product without depending on others outside of the team.
- The scrum master is responsible for ensuring the Scrum process is upheld and works to ensure the Scrum

team adheres to the practices and rules as well as coaches the team on removing impediments.

17

Scrum Artifacts
- The Scrum guide defines three artifacts: product backlog, sprint backlog, Increment.
- Scrum artifacts represent work or value. They are designed to maximize transparency of key information.

Thus, everyone inspecting them has the same basis for adaptation.
- Each of the Scrum artifacts contains a commitment to something

- The product backlog exists to reach the long term objective - product goal.
- The sprint backlog exists to reach the sprint goal that the Scrum team defines for every sprint. Each

sprint goal is a step toward achieving the goal.
- The product increment is committed to fulfilling the definition of done, which usually describes the

desired quality that the product should have.

PRODUCT
BACKLOG

SPRINT BACKLOG

INCREMENT

PRODUCT GOAL

SPRINT GOAL

DEFINITION OF
DONE

*A commitment means to be dedicated to achieving something specific. Having a commitment ensures that everyone knows why the work is
important and what is the desired outcome.

18

Scrum Events

- Scrum uses prescribed events or meetings or ceremonies, to reduce the need for other meetings that
are not defined in Scrum.

- This does not mean that the Scrum team cannot have other meetings, but it is mandatory to have the
Scrum events.

- At the heart of Scrum is the sprint, which acts as a container for all Scrum events. Remember that there
are no pauses or gaps between sprints and everything happens within the sprint container.

- For this reason, the sprint is a special kind of an event. All events within Scrum have a maximum
duration and are therefore - Time-boxed.

- Events are designed to enable transparency, inspection and adaptation. There are recommends that
the events are held at the same time and place to create a routine and to reduce complexity.

o Sprint Planning, where the work to be performed in the sprint is planned with no more than 8 hours
time-boxed.

o The Daily Scrum, which is held every day of the Sprint with no more than 15 minutes time-boxed.
o Sprint Review, which is held at the end of the sprint to review the increment with no more than 4 hours

time-boxed.
o Sprint Retrospective, which is an opportunity to discuss ways to improve our all Scrum events, which

are a formal opportunity to inspect and adapt with no more than 3 hours time-boxed.

19

Extreme Programming Framework

Simplicity

Communication

Feedback

Courage

Respect

- The coach acts as a mentor to the team, guiding the process and helping the team members stay on
track.

- On an XP team the “customer” is the business representative who provides the requirements, priorities,
and business direction for the project.

- The programmers are the developers who build the product by writing and implementing the code for
the requested user stories.

- The testers provide quality assurance and help the customer define and write acceptance tests for the
user stories.

20

Extreme Programming Practices
- Whole team sit together in the same location.
- Plan release and iteration use planning games.
- Frequent, small releases to a test environment are encouraged.
- Customer describes one or more customer test criteria that will indicate that the software working as intended.
- Multiple people work on the code to support code collective ownership.
- Follow a single code standards so that all the code look as if it has been written by a single knowledgeable

programmer.
- Highest level of productivity is achieved by team operating at sustainable pace.
- Metaphor is used to explain design and creates shared technical vision.
- XP employs continuous integration, every time a programmer checks in code to the code repositor, integration

tests are run automatically.
- Use Test-Driven Development Approach by writing the acceptance tests prior to developing the new code.
- Improving the design of existing code without altering its external behavior or adding new functionality through

refactoring.
- By focusing on keeping the design simple but adequate ,XP teams can develop code quickly and adapt it as

necessary.
- Production code is written by two developers working as a pair.

21

Kanban Method

- The Kanban Method is a holistic framework for incremental, evolutionary process and systems change for
organizations.

- The method uses a “pull system” to move the work through the process.
- When the team completes an item, the team can pull an item into that step.
- Utilizing policies for entry and exit to columns, as well as constraints such as limiting work in process,

Kanban boards provide clear insight to workflow, bottlenecks, blockers, and overall status.
- Completing work is more important than starting new work.

22

Crystal Method
- A family of situationally specific, customized methodologies that are coded by color names.

- Each methodology is customized by criticality and team size, which allows Crystal to cover a wide range

of projects, from a small team building a low-criticality system (Crystal Clear) to a large team building a

high-criticality system (Crystal Red).

23

Scrumban
- Scrumban is an evolving hybrid framework in and of itself where teams use Scrum as a framework and

Kanban for process improvement.
- Team organize the work into small “sprints” and leverages the use of kanban boards to visualize and

monitor the work. The stories are placed on the kanban board and the team manages its work by using
work-in-progress limits.

- Daily meetings are held to maintain the collaboration between the team and to remove impediments.
- There are no predefined roles in Scrumban—the team retains their current roles.

24

Feature Driven Development
- Feature-Driven Development (FDD) was developed to meet the specific needs of a large software

development project.
- There are six primary roles on a Feature-Driven Development project where individuals can take on one or

more: Project manager, Chief architect, Development manager, Chief programmer, Class owner,
and/or Domain expert.

- A Feature-Driven Development project is organized around five processes or activities: develop an overall
model, build a feature list, plan by feature, design by feature and build by feature.

- Feature-Driven Development activities are supported by a core set of software engineering best practices:

o Domain object modeling
o Domain object modeling
o Individual class ownership
o Feature teams
o Inspections
o Configuration management,
o Regular builds
o Visibility of progress and results.

25

Dynamic Systems Development Method (DSDM)

- DSDM is known best for its emphasis on
constraint-driven delivery. The framework will set
cost, quality, and time at the outset, and then use
formalized prioritization of scope to meet those
constraints.

- Eight principles guide the use of the DSDM
framework:
o Focus on the business need.
o Deliver on time.
o Collaborate.
o Never compromise quality.
o Build incrementally from firm foundations.
o Develop iteratively.
o Communicate continuously and clearly.
o Demonstrate control

26

Agile Unified Process (AgileUP)

- AgileUP accelerated cycles and less heavyweight processes than its Unified Process predecessor.
- The intent is to perform more iterative cycles across seven key disciplines, and incorporate the

associated feedback before formal delivery.

27

Questions

Which of the following is an Agile Manifesto value?.

a. Individuals and interactions over following a plan.

b. Working software over processes and tools

c. Responding to change over comprehensive documentation.

d. Customer collaboration over contract negotiation.

D. The third value of the Agile Manifesto is "Customer collaboration over contract negotiation:' While
the other choices use terms from the other three agile values, they aren't combined correctly.."

28

Questions

The agile triangle of constraints is said to be inverted from the traditional triangle because it allows:.

a. Scope and time to vary instead of cost.

b. Cost and time to vary instead of scope.

c. Scope and cost to be fixed instead of time.

d. Scope to vary while time and cost are fixed.

D. Unlike the traditional constraint triangle, in which scope is fixed and time and cost may need to
bend to achieve that planned scope, agile teams typically allow scope to vary within fixed
parameters of cost and time. In other words, they aim to deliver the most value they can by X date
within X budget.

29

Questions

Which of the following Agile Manifesto principles reflects the agile focus on team empowerment?.

a. Working software is the primary measure of progress.

b. Welcome changing requirements, even late in development.

c. Simplicity-the art of maximizing the amount of work not done-is essential.

d. Build projects around motivated individuals.

D. Agile Manifesto principle five, "Build projects around motivated individuals" addresses the
importance of giving teams the environment and support they need, and trusting them to get the job
done. Supporting and trusting the team members means recognizing that they are experts at what
they do, and that they can work most effectively if they are empowered to plan and organize their
own work.

30

Questions

Which of the following isn't a core aspect of the agile mindset?.

a. Welcome change.

b. Learn through discovery.

c. Respect the process.

d. Deliver value continuously.

C. The first value of the Agile Manifesto-"individuals and interactions over processes and tools"-is
another indication that "respect the process" isn't part of the agile mindset.

Life Cycle Selection

31

There are variety of ways to undertake projects, predictive life cycle, iterative life
cycle, incremental life cycle, agile life cycle, hybrid life cycles are some of the project
life cycle for approach selection.

32

Incremental and Iterative

Iterative Life cycles Incremental life cycle

• Successive prototypes or proofs of concept to
improve product results.

• Iterations help identify and reduce uncertainty in the
project.

• Iterative life cycles may take longer because they are
optimized for learning rather than speed of delivery

• Incremental life cycle deliver a subset of the overall
solution to optimize for speed of delivery.

33

Agile Life Cycle
Iteration-based Agile Flow-based Agile

• The team works in iterations (timeboxes of equal
duration) to deliver completed features.

• The team works on the most important feature,
collaborating as a team to finish it. Then the team
works on the next most important feature and
finishes it.

• The team pulls features from the backlog based on its
capacity to start work.

• The team defines its workflow with columns on a task
board and manages the work in progress

• Each feature may take a different amount of time to
finish.

• Teams keep work-in-progress sizes small to better
identify issues early and reduce rework.

• The team and business stakeholders determine the
most appropriate schedule for planning, product
reviews, and retrospectives.

34

Hybrid Life Cycles
A combination of predictive, iterative, incremental, and/or agile approaches is a hybrid approach.

Approach 1. Early processes utilize an agile development life cycle, which is then followed by a predictive rollout phase.

Case. The development portion of the project might suitable for agile approach while the repeatable rollout

phase that is appropriate to undertake in a predictive way

Approach 2. Combination of agile and predictive approaches throughout the life cycle.

Case. The team is incrementally transitioning to agile and using some agile practices but other aspects of the project

such as upfront estimation, work assignment, and progress tracking are still following predictive approaches

35

Hybrid Life Cycles
A combination of predictive, iterative, incremental, and/or agile approaches is a hybrid approach.

Approach 3. Largely Predictive Approach with Agile Components

Case. A portion of the project with uncertainty, complexity, or opportunity for scope creep is being tackled in an

agile way, but the remainder of the project is being managed using predictive approaches.

Approach 4. A Largely Agile Approach with a Predictive Component

Case. A particular element is non-negotiable or not executable using an agile approach.

36

Characteristic of Life Cycles

37

Questions

You are analyzing a process and are on the lookout for the anti-patterns of poor methodologies. What

characteristics should you be looking for?

Select one:

a. One-of-a-kind, disciplined, heavy, embellished

b. One-size-fits-all, disciplined, heavy, embellished

c. One-size-fits-all, intolerant, heavy, embellished

d. One-of-a-kind, intolerant, embellished.

C. One-size-fits-all, intolerant, heavy, embellished. If a methodology is one-of-a-kind, this might also be
a warning sign, since it means the methodology has not been repeated, but it is not as concerning as a
claim that the methodology is a one-size-fits-all approach. Such a claim demonstrates a lack of
situational awareness. The characteristic of being disciplined is not something to be wary of, since agile
methods are very disciplined; we should not mistake being disciplined for being process-heavy

38

Questions

Your sponsor is asking about tailoring the company's newly adopted agile methodology. Your advice

should be:

Select one:

a. Tailoring it will be a good way to learn more about the methodology.

b. Tailoring it will be a good way to ease into the initial adoption process.

c. We should tailor it first, then consider adopting it.

d. We should try it first, then consider tailoring it.

D. Agile methods should be tried as-is first before considering modifications for process tailoring. We
needs to first understand how the practices work before we attempt to change them. If we change the
method first and then encounter problems, how will we know if the problems are genuine project issues
or the result of the changes we made?

Agile Team

39

Describes all the roles form an agile team and
their responsibilities as well as servant
leadership’s duties.

40

Servant leadership is the practice of leading through service to the team, by focusing on understanding and

addressing the needs and development of team members in order to enable the highest possible team

performance. Servant Leadership work with the team to define according to the following order:

Purpose. Work with the team to define the “why” or purpose so they can engage and coalesce around the

goal for the project.

People. Once the purpose is established, encourage the team to create an environment where everyone

can succeed.

Process. Do not plan on following the “perfect” agile process, but instead look for the results. When a cross

functional team delivers finished value often and reflects on the product and process, the teams are agile.

Servant Leadership

41

Four Duties of a Servant Leadership

42

- The most effective agile teams tend to range in size from three to nine members.

- Agile teams are co-located in a team space or has the ability to manage any location challenges.
- Team members are 100% dedicated to the teams to increase focus and productivity.

- Agile encourages self-managing teams, where team members decide who will perform the work

within the next period’s defined scope.
- Agile teams thrive with servant leadership.

- Cross-functional agile teams produce functional product increments frequently. Teams are mixed of

generalist and specialist.
- Agile team maintains a stable work environment to reach the highest productivity.

- There are three common roles in agile: cross-functional team members,

product owner and team facilitators.

Agile Team

43

Cross-functional team members

- Cross-functional teams consist of team members with all the skills necessary to produce a working

product.
- For examples, they can be designers, developers, testers, and any other required roles.

- The cross-functional team members deliver potentially releasable product on a regular cadence.

- Cross-functional teams are critical because they can deliver finished work in the shortest possible time,
with higher quality, without external dependencies.

- In Scrum framework, they can be called as developers, while XP describes these roles as

programmers.

44

Product Owner
- The product owners guides the direction of the product by ranking the work based on its business

value.
- The product owners work with their teams daily by providing product feedback and setting

direction on the next piece of functionality to be developed/delivered.

- The product owners work with stakeholders, customers, and the teams to define the product
direction.

- The product owners create the backlog for and with the team.

- The product owners decide when and what to be released.
- The product owners accept or reject work results.

- Product owner can be called as “Customer” in XP framework.

45

Team facilitator
- The third role typically seen on agile teams is of a team facilitator, a servant leader.

- This role may be called a project manager, scrum master, project team lead, team coach, or team
facilitator.

- The team facilitators educate stakeholders around why and how to be agile.

- The team facilitators promote collaboration and conversation within the team and between
teams.

- The facilitators change or remove these organizational impediments to support delivery teams.
- The facilitators support the team through mentoring, encouragement, and support.

46

Questions

Who is accountable for the Product Backlog when it comes to content and order?

a. The Product Owner and the Developers
b. The Product Owner

c. The Scrum Master

d. The Stakeholders and the Product Owner
e. The Stakeholders

B. Only the Product Owner is accountable for managing the Product Backlog, even if they collaborate
with the rest of the Scrum Team and the Stakeholders.

47

Questions

The four primary roles of a servant leader include:

a. Shielding team members from interruptions.
b. Resolving conflicts.
c. Determining which stories to include in an iteration.
d. Assigning tasks to the team members.

A. Shielding team members from interruptions. The four primary roles of a servant leader are shielding
the team from interruptions, removing impediments to progress, communicating the project vision, and
"carrying food and water:'

48

Questions

Who is responsible for creating potential releasable increment?

a. The Developers, but only if the Scrum Master is happy with the technical solution proposed.
b. The Developers.

c. The Scrum Master.

d. The Product Owner.

B. Developers are the people in the Scrum Team that are committed to creating any aspect of a usable
Increment each Sprint.

49

Questions

Scrum Teams are cross-functional. What does this mean?

a. Every Scrum Team member has all the skills required to create the Product. This is useful in case
somebody is absent.

b. Scrum Teams can decide which skills they want to learn.

c. The Scrum Team, as a whole, has all the skills to create the Product.

C. Scrum Teams are cross-functional, meaning the members have all the skills necessary to create
value each Sprint.

Agile Delivery

50

Agile team charter the project and team; follow
the agile practices and use agile measurements
to deliver in an agile environment.

51

Agile Project Charter

- Agile Charter Project needs the project vision or purpose and a clear set of working agreements at
minimum.

- Chartering the project will be facilitated by the servant leader.

Why are we doing this project

Who benefits and how?

What does done mean for the project?

PROJECT VISION

PROJECT PURPOSE

RELEASE CRITERIA

How are we going work together INTENDED FLOW OF WORK

52

Team Charter

A document that enables the team to establish its values,
agreements, and practices as it performs its work together.
Includes:

ü Shared values: such as sustainable pace and core hours;

ü Guidelines for communications and use of tools

ü Decision-making guidelines

ü Conflict resolution measures

ü Meeting time, frequency, and channel

ü Other team agreements e.g. shared hours, improvement
activities

53

Agile Events
Backlog Refinement Iteration Planning Meeting Daily Standup

• A meeting with no more than 1

hour per week for refining

stories for the next batch of

work.

• It can be called as grooming the

backlog.

• Product owner works with the

team to prepare some stories

for the upcoming iteration

during one or more sessions in

the middle of the iteration.

• All the team participate in the

meeting.

• A timeboxed meeting no longer

than 8 hours.

• Participants: the delivery team, the

product owner, and possibly other

stakeholders or SMEs as needed.

• The meeting requires a prioritized

backlog and a goal for iteration.

• The team discuss how the work will

be completed

• Teams estimate what can be

completed, but cannot predict with

100% what can be delivered.

• A timeboxed meeting no longer

than 15 minutes.

• It can be called as standup

meeting.

• In flow based Agile, focus is on

team’s throughput.

• Meeting is for realizing the

problem – not solving the

problem.

• The meeting is for development

team only.

54

Agile Events
Demonstrations/Reviews Retrospectives

• A timeboxed meeting with no more than 4 hours.

• The team demonstrates all completed work items

at the end of iteration in iteration-based agile.

• In flow-based agile, the team demonstrates

completed work when it is time to do so.

• Product owner sees the demonstrations and

accepts or declined stories.

• The recommendation frequency for the demo

meeting is at least once every 2 weeks.

• The meeting is to getting feedback early and learn

fast to frequently deliver working product.

• Opportunity to learn about, improve, and adapt its

process, people, interaction and tools.

• Holds retrospective at the end of iteration; or team can

decide retrospect when:

o completes a release or ships something.

o more than a few weeks since the last retrospective

o the team appears to be stuck

o the team reaches any other milestone

• Team facilitator facilitates the event.

• The meeting output are list of ranking action items.

• The appropriate number of work will be chosen to work

on for the next iteration (or added to the flow if flow-

based)

55

Execution practices
1. Continuous Integration

Retest to determine that the entire product still works as intended.

Frequent incorporate works into the whole.

2. Test at all levels

Employ system-level testing for end-to-end information and unit testing for the building blocks.

Check for the need of integration testing and where.

3. Acceptance Test-Driven Development (ATDD).

Moves the testing focus from the code to the business requirement.

Defines the acceptance criteria from user’s perspective and creates the test before writing code.

56

Execution practices

4. Test-Driven Development (TDD)

Test is written before the code is written (test-first).

Developers begin a cycle of writing code and running the tests until the code passes all tests (refactor).

5. Behavior Driven Development

Team code, retest and refactor to ensure that the entire product works as required behaviors.

An extension to TDD where team starts by writing a system behaviors, then automated test scripts.

6. Spikes

A timeboxed research or experiments.

Architectural spike used for research and risk-based spike used for risk mitigation.

57

Agile Project Challenges

Agile chartering for purpose—vision, mission, and mission tests

Unclear purpose or mission

Agile chartering for alignment—values, principles, and working agreement

Unclear working agreements

Agile chartering for context—boundaries, committed assets, and prospective analysis

Unclear team context

Craft a product vision; clarify the expectations and value of a requirement. Progressively

decompose roadmap into backlog of smaller, concrete requirements

Unclear requirements

58

Agile Project Challenges

User experience design practices included in the development team involve users early and often.

Poor user experience

Reduce story size by splitting stories. Use relative estimation with the entire team to estimate.
Consider agile modeling or spiking.

Inaccurate estimation

Team self-manage their work. Consider Kanban boards to see the flow of work. Consider a daily

standup to walk the board and see what work is where.

Unclear work assignments/work progress

A servant leader help clear these obstacles; or escalate obstacles (or roadblocks) the team or

servant leader has not been able to remove.

Team struggles with obstacles

59

Agile Project Challenges

Product owner and team workshop stories together. Create a definition of ready for the

stories. Consider splitting stories to use smaller stories.

Work delays due to insufficiently refined PBIs

Consider the technical practices: pair work, collective product ownership, pervasive testing
(test-driven and automated testing approaches) and a robust definition of done

Defects

Team define definition of done for stories including acceptance criteria. Also add release

criteria for projects.

Work is not complete

Refactoring, agile modeling, pervasive testing, automated code quality analysis,

definition of done.

Technical debt

60

Agile Project Challenges

Apply the agile principle of “Simplicity--the art of maximizing the amount of work not done”

to reduce complexity.

Too much product complexity

Capture no more than three items to improve at each retrospective. Ask the servant leader
to help the team learn how to integrate those items.

Slow/no improvement in the teamwork process

Create spikes to learn; measure the WIP; shorten iterations and create a robust definition

of done.

Too much upfront work leading to rework

Ask the product owner to become an integral part of the team.

False starts, wasted efforts

61

Agile Project Challenges

Rank with value including cost of delay divided by duration (CD3) and other value models

Inefficiently ordered PBIs

Plan to the team’s capacity; stop multitasking and be dedicated to one team.
Work as pairs, a swarm, or mob to even out the capabilities across the entire team.

Rush/wait uneven flow of work

Servant leadership to work with this stakeholder (and possibly product owner).

Impossible stakeholder demands

Use Kanban boards to see the flow of work and WPI limits; track impediments and impediment

removal on an impediment board.

Unexpected or unforeseen delays

• Self-organize as cross-functional teams. Use servant leadership skills to help the managers

understand why agile needs cross-functional teams.

Siloed -team

62

Measurements in Agile

- Agile measures what the team delivers, not what the team predicts it will deliver.

- If there is low variability in the team’s work and if the team members are not multitasking, the team’s

capacity can become stable which allows better prediction for the next couple of weeks.
- Agile teams use empirical data and replans further small increments to manage the project uncertainty.

- Iteration-based Agile can use burnup, burndown charts to see where is the project going overtime
and velocity for measurement.

- Flow-based Agile can uses lead time, cycle time for measurements

Case: Sponsors usually want to know when the project will be done. The team established a reliable

velocity (average 50 story points per iteration) or the average cycle time; there are about another 500
points remaining.

Then the team estimates it has about 10 iterations remaining, approximately 5 months if an iteration

spans two weeks.

63

Burndown chart

- Once a team has assigned a story point value
to all of the user stories in the sprint backlog,
they can use burndown charts to get a handle on
how the project is progressing.
- A burndown chart is a simple line chart that
shows the remaining story points.
- Using a burndown chart, it’s clear to everyone
on the team how close they are to achieving
their sprint goals.
- NOT related to the project costs or the business
value
- NOT related to the productivity of the team or
to the individual team member.

64

Burnup chart
- Burn-up chart show the work completed.
- When stories are added or deleted from the

scope it’s obvious by looking at the scope
line.

- Because the scope is tracked on a different
line from the number of points accomplished,
it’s clearer when the scope is changing.

- Whether burndown or burnup charts is used,
at the end of the iteration, team might base
their next measure of capacity on what they
completed in this iteration.

- Velocity, the sum of the story point sizes for
the features actually completed in this
iteration, allows the team to plan its next
capacity more accurately by looking at its
historical performance.

65

Kanban Board
- Lead time: the total time it takes to deliver an item,

measured from the time it is added to the board to the
moment it is completed;

- Cycle time: the time required to process an item and
response time (the time that an item waits until work starts).
Teams measure cycle time to see bottlenecks and delays.

- The work in progress (WIP) limits at the top of each column,
allows the team to see how to pull work across the board.

- When the team has met its WIP limits, the team cannot pull
work from the left into the next column.

- Each feature is unique, so its cycle time is unique.
- Smaller features have smaller cycle times. The product owner

wants to see throughput, so the product owner creates
smaller features or works with the team to do so.

66

Cumulative Diagram
- A cumulative flow diagram shows the work in

progress across a board.

- If a team has many stories waiting for test, the

testing band will swell. Work accumulation can

be seen at a glance.

- Teams have trouble with accumulating work:

the team has work in progress instead of

work completed.

- When teams have a lot of work in progress,

they delay their overall feature delivery.

- Teams can limit their work in progress to

remove bottle neck.

67

Feature Chart & Product Backlog Burnup Chart
- When teams measure only story points, they measure

capacity, not finished work.
- Team can measure completed work in a feature

burnup/burndown chart and in a product backlog burnup
chart.

- The features complete line shows that the team completes
features at a regular pace. The total features line shows how
the project’s total features changed over time.

- The features remaining burndown line shows that the rate of
feature completion varies. The burndown line changes when
features are added to the project.

- The team can show its completed value with a product
backlog burnup in case the entire feature can not completed
until several more time periods have passed.

68

Earned Value Calculation in Agile
- Burn-up chart can be used to measure Earn Value.
- SPI = Completed Features/Planned Features
- CPI = Earned Value/Actual Costs

Case:
If the team planned to complete 30 story points in an
iteration, but only completed 25 then:
SPI = 25/30 or 0.83 (the team is working at only 83% of
the rate planned).
CPI = $2.2M / $2.8M = 0.79 (according to the figure)
This means a result of only 79 cents on the dollar
compared to plan.

69

Questions

Your sponsor has asked for clarification on when releases of your product will ship and what those

releases will contain. Which agile deliverable would best address this need?
a. Product demo.

b. Product roadmap

c. Product backlog

d. Product owner.

B. The product roadmap shows release dates and the high-level contents of releases, so it would be the
best deliverable for answering these questions.

70

Questions

What is velocity not used for? Select one.

a. Gauging the team's work capacity.
b. Checking the validity of the release plan.
c. Getting a sense of the amount of work done per iteration.
d. Defining feature requirements

D. Velocity is a versatile metric that does indeed provide insight into team capacity, release plan
validity, and finally the amount of work done per iteration.

71

Questions

A short timeboxed period set aside to investigate and eliminate a risk is called a. Select one.

a. Risk stop.
b. Spike of iteration.
c. Risk-based spike.
d. Risk-first design.

C. A short timeboxed period set aside to investigate and eliminate a risk is known as a risk based spike.
The other options are made-up terms.

72

Questions

The three questions that are answered in daily stand-up meetings aim to:

Select one:
a. Identify problems and describe accomplishments.

b. Identify opportunities and celebrate accomplishments.

c. Fix problems and share accomplishments.
d. Fix problems and agree upon work planned

A. The three questions asked at stand-up meetings are: "What have you worked on since the last
meeting?" "What do you plan to finish today?" and ''Are there any problems or impediments to your
progress?" These questions describe accomplishments and work planned and identify problems.
Identifying opportunities, celebrating accomplishments, and fixing problems are worthy efforts, but
they are not done in the stand-up meeting.

73

Questions

On agile projects, the term "cycle time" usually refers to:

Select one:
a. The average duration of an iteration, based on the team's capacity

b. The time required for the team to complete a work item, from start to finish

c. The time required for subject matter experts to review the product
d. The time periods ("cycles") between the releases of a product

B. On agile projects, cycle time is typically used to refer to the time it takes the team to complete the
development of a work item, from start to finish. Officially, this concept is a subset of lead time,
measuring how long it takes for something to go through part of a process.

Procurement and Contract

74

The Agile Manifesto values “customer collaboration over contract negotiation”.

75

Contracting in Agile Project

- An agile approach requires more trust between the parties than the traditional approach.

- The agile approach also requires the customer to be more involved in providing feedback on iteration
deliverables, reprioritizing the backlog, and ranking the value of change requests against the

remaining work items.

- For trusting, invested clients, agile contracts are great tools for extracting more value, and they give
those clients a competitive advantage.

- For untrusting or hands-off clients, agile contracts will be a tough sell and may not be suitable.
- Agile values a collaborative approach which pursues a shared-risk-reward relationship.

76

Contracting techniques
Contracting techniques Description

Multi-tiered structure • Different aspects are described in different documents
• Fixed items (e.g., warranties, arbitration) can be locked in a master agreement.
• Items subject to change in a schedule of services.
• More dynamic items such as scope, schedule, and budget can be formalized in a

lightweight SOW.

Emphasize value
delivered

• Milestones and payment terms can be structured based on value-driven deliverables in
order to enhance the project’s agility

Fixed-price increments • Decompose the scope into fixed-price micro-deliverables, such as user stories.
• For the customer, more control over how the money is spent. For the supplier, limits the

financial risk of over-commitment to a single feature or deliverable

Not-to-exceed time and
materials.

• Limit the overall budget to a fixed amount.
• Customer are allowed to incorporate new ideas and innovations into the project not

originally planned.
• Contingency hours could be planned into the maximum budget if considered helpful.

77

Contracting techniques
Contracting techniques Description

Graduated time and
materials

• Financial risk can be shared.
• A higher hourly rate can be rewarded when delivery is earlier than the deadline.
• Rate reduction can be suffered for late delivery

Early cancellation
option

• When an agile supplier delivers sufficient value with only half of the scope completed, the
customer should not be bound to pay the remaining if they no longer needs it.

• The customer limits budget exposure and the supplier earns positive revenue for services
no longer required.

Dynamic scope option • Budget is fixed, risk of over commitment from supplier is limited
• Supplier may offer the customer the option to vary the project scope at specified points.

Team augmentation • Embed the supplier’s services directly into the customer organization.
• Funding teams instead of a specific scope preserves the customer’s strategic discretion on

what work should actually be done.

Favor full-service
suppliers

• Contracting with multi-suppliers.
• Favor each supplier deliver full value to reduce dependency with other suppliers.

78

Questions

Which of the following is true about agile contracts?

Select one:
a. They only work when the specs are fully defined.

b. They only work for time and materials agreements.

c. They need to be able to accommodate changes.
d. They cannot easily accommodate changes.

C. The need to accommodate changes is a major reason agile contracts were developed, so that is
the correct answer.

79

Questions

You have been asked to outline the basics of agile contracting for your steering committee. Which of the

following statements best describes the recommended approach to contracting on agile projects?

Select one:

a. The contract is worded to allow for early completion of scope, and acceptance is based on items

matching the original specification.

b. The contract is worded to allow for reprioritization of scope, and acceptance is based on items

matching the original specification.

c. The contract is worded to allow for early completion of scope, and acceptance is based on items being

fit for business purpose.

d. The contract is worded to allow for reprioritization of scope, and acceptance is based on items being fit

for business purpose.

D. Two components common to agile contracts are an ability to reprioritize work and the goal of
satisfying the business, rather than conforming to a spec.

Scaling Agile

80

A range of frameworks such as the Scaled Agile Framework, Large Scale Scrum, and
Disciplined Agile and approaches e.g., Scrum of Scrums have emerged to cater the
collaboration of multiple agile teams in a program or portfolio.

81

Feature teams vs. Component teams

- The architecture of the shop is currently divided into three separate layers.
- There is the user interface, this is what you see and this makes it easier for the customers to

interact with the shop, to see products and to order them.
- Then there is the business logic layer which you don't see, but the application handles the

business logic and connects the user interface with the database.
- And finally, the database contains all the information regarding the products, the customers

and orders, so everything that needs to be persisted.

82

Feature teams
- For example, the feature is giving the customers the ability to order a Product. So a Product must be

visible on the website and then when the customer clicks on, buy it, the application must handle the
order in the database must store all this information for the processing or whatever the internal
processes are. So you have to go through all the layers in order to implement most of the features.

- So a Feature Team will work through all the layers of the application to fulfill a customer or user
need. A Feature Team is cross-functional and cross-component because it has all the skills needed
to complete the feature and does that by working through all the layers or components of the
application.

83

Component teams
- Component Team. Sometimes also referred to as the Layer Team is focused on single or multiple

components of the system.
- A Component Team alone will typically not be able to deliver new functionality, that alone will

fulfill a customer's need.
- For example, one Team would only handle the user interface, the UI, then that team alone would not

be able to process orders, because it would not know how to work with a database layer or with the
application layer and would have to rely on other teams to do their jobs.

84

Feature teams vs. Component teams
- Component Teams increases the dependencies between the teams and reduces the chances of

producing an Integrated Product Increment by the end of a Sprint.
- If one team for whatever reason, did not provide what they plan to by the end of the Sprint, then

the other teams cannot work on their end. So that can cause problems. And this is why it says that
typically the chances of producing an integrated Product Increment is lower when using Component
Team.

- Feature Teams are desirable, as they are closer to the Cross-Functional aspect as it is described in
the Scrum Guide. Nevertheless, Feature Teams are not mandatory in Scrum.

85

Scrum of Scrum

- When two or more Scrum teams consisting of
three to nine members each need to coordinate
their work instead of one large Scrum team, they
use Scrum of Scrum.

- A representative from each team attends a
meeting with the other team representative(s),
potentially daily but typically two to three times a
week.

- The goal is to ensure the teams are coordinating
work and removing impediments to optimize the
efficiency of all the teams.

- Large projects with several teams may result in
conducting a Scrum of Scrum of Scrums.

86

Scaled Agile Framework (SAFe®)

SAFe® focuses on detailing practices, roles, and activities at
the portfolio, program, and team levels with an emphasis on
organizing the enterprise around value streams that focus
on providing continuous value to the customer. Safe® is
focused on the following principles:
o Take an economic view.
o Apply systems thinking.
o Assume variability; preserve options.
o Build incrementally with fast, integrated learning cycles.
o Base milestones on objective evaluation of working systems
o Visualize and limit work in progress, reduce batch sizes, and

manage queue lengths.
o Apply cadence; synchronize with cross-domain planning.
o Unlock the intrinsic motivation of knowledge workers.
o Decentralize decision making

87

Large Scale Scrum (LeSS)
- Large Scale Scrum (LeSS) is a framework for

organizing several development teams
toward a common goal extending the Scrum
method.

- The core organizing principle is to retain as
much as possible of the elements of the
conventional single-team Scrum model.

- This helps minimize any extensions to the
model that might create unnecessary
confusion or complexity.

88

Enterprise Scrum
- Enterprise Scrum is a framework designed to apply the Scrum method on a more holistic organizational

level rather than a single product development effort.
- The framework advises organization leaders to:

o Extend the use of Scrum across all aspects of the organization;
o Generalize the Scrum techniques to apply easily at those various aspects; and
o Scale the Scrum method with supplemental techniques as necessary.

89

Disciplined Agile
- Disciplined Agile (DA) is a process decision

framework that integrates several agile best practices
into a comprehensive model. DA blends various agile
techniques according to the following principles:

o People-first. Enumerating roles and organization
elements at various levels.

o Learning-oriented. Encouraging collaborative
improvement.

o Full delivery life cycle. Promoting several fit-for-
purpose life cycles.

o Goal-driven. Tailoring processes to achieve specific
outcomes.

o Enterprise awareness. Offering guidance on cross-
departmental governance.

o Scalable. Covering multiple dimensions of program
complexity.

Thank You

+84 28 6684 6687

cs@atoha.com

Atoha Institute of Project Management

